Local Differential Excitation Binary Co-occurrence Pattern (LDEBCoP): A New Descriptor for Texture and Bio-Medical Image Retrieval

نویسندگان

  • G V Satya Kumar
  • Krishna Mohan
چکیده

This paper presents a novel pattern based feature descriptor named as Local Differential Excitation Binary Cooccurrence Pattern (LDEBCoP) for texture and biomedical image retrieval. The proposed method exploits the local structure information using differential excitation. Further, to produce more compact local binary patterns the adjacent neighbourhood pixel pairs are considered in the computation of differential excitation. In the proposed method, the co-occurrence of pixel pairs in local binary map have been observed using gray level co-occurrence matrix(GLCM) in different directions and distances for better feature representation. Previous methods have utilized histogram to obtain the frequency information of local pattern map but cooccurrence of pixel pairs is more robust than frequency of patterns. The performance of proposed method is compared with the state of the art pattern based techniques on the results obtained using various bench mark image databases viz., KTH-TIPS, OUTEX texture database, NEMA−CT database and VIA/I– ELCAP database which also includes region of interest CT images.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Second-Order Statistical Texture Representation of Asphalt Pavement Distress Images Based on Local Binary Pattern in Spatial and Wavelet Domain

Assessment of pavement distresses is one of the important parts of pavement management systems to adopt the most effective road maintenance strategy. In the last decade, extensive studies have been done to develop automated systems for pavement distress processing based on machine vision techniques. One of the most important structural components of computer vision is the feature extraction met...

متن کامل

Local Neighborhood Intensity Pattern: A new texture feature descriptor for image retrieval

In this paper, a new texture descriptor based on the local neighborhood intensity difference is proposed for content based image retrieval (CBIR). For computation of texture features like Local Binary Pattern (LBP), the center pixel in a 3×3 window of an image is compared with all the remaining neighbors, one pixel at a time to generate a binary bit pattern. It ignores the effect of the adjacen...

متن کامل

The Analysis of Image Texture Feature Robustness Using CometCloud

The robustness of image features is a very important characteristic for quantitative image analysis. The objective of this paper is to investigate the robustness of various texture features using Hematoxylinstained breast tissue microarray slide by simulating different practical imaging problems including out of focus, magnification changes, illumination variations, noise, compression, distorti...

متن کامل

Texture Bags: Anomaly Retrieval in Medical Images Based on Local 3D-Texture Similarity

Providing efficient access to the huge amounts of existing medical imaging data is a highly relevant but challenging problem. In this paper, we present an effective method for content-based image retrieval (CBIR) of anomalies in medical imaging data, based on similarity of local 3D texture. During learning, a texture vocabulary is obtained from training data in an unsupervised fashion by extrac...

متن کامل

Automatic Face Recognition via Local Directional Patterns

Automatic facial recognition has many potential applications in different areas of humancomputer interaction. However, they are not yet fully realized due to the lack of an effectivefacial feature descriptor. In this paper, we present a new appearance based feature descriptor,the local directional pattern (LDP), to represent facial geometry and analyze its performance inrecognition. An LDP feat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017